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1. The growth of networks
random graphs, power laws, and small worlds



Basic notions on undirected graphsBasic notions on undirected graphs

G = (V,E)

      N = |V|,   M = |E|

      C: number of connected components

      L: number of independent loops

      k: vertex degree
if  C = 1  then  M ≥ N - 1

if  C = 1  and  M = N – 1, G is a tree  ( L = 0 )



A basic formula on undirected graphsA basic formula on undirected graphs

N + L  =  M +  CN + L  =  M +  C

N = 9
M = 11
C = 1
L = 3



Random networksRandom networks have a disordered
arrangement of edges.

A particular random network under study is
only one member of a statistical ensemblestatistical ensemble of
all possible realizations.

Therefore the statistical descriptionstatistical description of a
random network is in fact the description of
the  corresponding ensemble.

We shall study networks in the form of
graphsgraphs (possibly, random graphs).



Degree distributionDegree distribution

p(k,s)p(k,s) is the probability that vertex s has degree kk

Total degree distributionTotal degree distribution

Average degreeAverage degree (first moment)

   The number of edges is



Networks with directed edges (directed graphs)Networks with directed edges (directed graphs)

p(kp(kii,s,s)) and p(kp(koo,s),s) are the probabilities that vertex ss
has in-degree kkii and out-degree kkoo

The total degree distributions P(kP(kii)) and P(kP(koo)) are
defined as before

The average average in and out-degrees
are equal:



Typical degree distributions for networks, for
N → ∞  and fixed value of  k

The PoissonPoisson distribution

where the average average is

computed from 0 to ∞



The Poisson distributionThe Poisson distribution

ln P(k)

ln k

Natural scale of
the order average
degree



The Exponential distributionThe Exponential distribution

ln P(k)

ln k

Natural scale of
the order average
degree



In the Poisson and Exponential distributions:In the Poisson and Exponential distributions:

all the moments

are finite



The Power-law distributionThe Power-law distribution



The Power-law distributionThe Power-law distribution

ln P(k)

ln kcut

Real networks have a cut pointcut point: the number
of vertices of degree  > kcut is of order 1



In an infinite Power-law distribution

all higher moments of order  m > γ - 1  diverge.diverge.

If the first-order moment (average degree)
is finiteis finite, we have γ > 2 .

In a growing network, M may grow faster than a
linear function of N.  In this case the average
degree divergesdiverges and we have  1 < γ ≤ 2 .



Infinite power-laws are self-similarInfinite power-laws are self-similar

Self-similarity means that an infinite structure S and a part of
it appear to be the same. This entails the possibility of scaling,

In the Euclidean space a volume V scales with exponent
+3 in the linear length L: a cube with  V = L3  is still a
cube if the edge is doubled,  L = 2L and V = 23 L3.

Fractals scale according to their non integer dimensions.

i.e., for S = S(x)  we have  S(cx) = c 
γ S(x)  where c is a

constant and  γ is the scaling exponent.

The only functions obeying this relationship are the
power-laws.



The The ErdErdööss--RRéényi nyi graph processgraph process

• The network has N fixed vertices.

• M ≤ N (N-1) / 2 edges are added  one by one. After all insertions,
each two vertices are connected by an edge with probability p

• One of the 2 N 
(N-1)

 
/2 possible graphs is generated

Degree analysis
In a vertex of degree k, the edges can reach any k of the
other N-1 vertices. Standard combinatorics yields the
binomial distribution:



Together with the binomial distributiondistribution we have:

the average degree is  k = p (N-1)

and the network has  M = p N (N-1)/2  edges on average

For  N → ∞  and  k  fixed, the degree distribution takes
the Poisson form:



The The one vertex at a timeone vertex at a time graph growing graph growing

• The network has N vertices, inserted one at a time. At step s,
vertex  s  is added.

• M = N-1 edges are added randomly between existing vertices,
one at each step.  k(s,t) is the degree of vertex s at time t ≥ s.

• Upon birth, each vertex is not connected: k(s=t,t) = 0.

Degree analysis
At step t, each vertex may increase its degree by  2/t (two
vertices are connected by an edge) with same probability. On
average:



One vertex at a time analysis (continued)One vertex at a time analysis (continued)

to finally have:

For determining  C(s)  in

use the boundary condition

Then, for any fixed vertex s, the degree grows moderately with t.

The degree distribution  P(k,t)  is proportional to the number of
vertices with degree  k in a small interval around  k. Then:

Exponential distribution



The The preferential linkingpreferential linking growing growing

•The network has N vertices, inserted one at a time. At step s,
vertex  s  is added.

• M = N-1 edges are added, one at each step.  k(s,t) is the
degree of vertex s at time t ≥ s. The new edge is attached at
vertices x, y with probabilities proportional to k(x,t)+A ,
k(y,t)+A .

• Note that A>0 otherwise a new vertex never gets an attached
edge.

• A greater value of A (from 0 to ∞) indicates a smaller
“preference”.



Preferential linkingPreferential linking analysis analysis
Degree analysis

On average, at step t a vertex s  increases its degree by:

then the average degree
of s  is determined by:

with boundary condition  k(s=t,t) = 0  (upon birth each vertex
is not connected).

This yields:
The degree of s
grows sharply with t



Preferential linkingPreferential linking analysis (continued) analysis (continued)

As for the exponential case, the degree distribution  P(k,t)  is
proportional to the number of vertices with degree  k in a small
interval around  k. Then:

Power-law distribution

that yields:



The simple Barabási-Albert model (SBAM) 1999

•The network has N vertices, inserted one at a time. At step s,
vertex  s  is added.

• M = N-1 edges are added, one at each step.  k(s,t) is the
degree of vertex s at time t ≥ s. The new edge is attached to s,
and to vertex x with probability proportional to k(x,t).



SBAMSBAM analysis analysis

On average, at step t the degree of a vertex s is  increased by:

then the average degree
of s  is determined by:

with boundary condition  k(s=t,t) = 1  (each new vertex is
connected to the new edge).

This yields:

Power-law

and then



The The BarabBarabáásisi-Albert model with directed edges (DBAM)-Albert model with directed edges (DBAM)
At each step a new vertex v and m edges are added, directed from v
to existing vertices chosen with preferential linkingpreferential linking on the in-degree.

v

m edges

Old net



DBAM growingDBAM growing

•The network has N vertices, inserted one at a time. At step s,
vertex  s  is added. ki(s,t) is the in-degree of vertex s at time t ≥ s

• M = m(N-1) edges are added, m of them for each time step. The
m edges  are directed from the new vertex v to vertices x with
probability proportional to ki(x,t) + α m  (the original DBAM had α =
1). At each time step the total degree of s  is  ki(s,t) + m, as the
out-degree is always m.



DBAMDBAM analysis analysis

On average, at step t the in-degree of a vertex s is  increased by:

then the average degree
of s  is determined by:

with boundary condition  ki(s=t,t) = 0.

This yields

Power-lawand



The The preferential-and-randompreferential-and-random model of model of
DorogovtsevDorogovtsev-Mendes (PRDMM) 2003-Mendes (PRDMM) 2003

new vertex v

m preferential

Old net

This is a more realistic model of growth with directed edges.
In fact, is a minimal model that captures the effect of both
preferential and random linking.

r randomn fixed



PRDMM growingPRDMM growing

• The network has N vertices, inserted one at a time. At step s,
vertex  s  is added. ki(s,t) is the in-degree of vertex s at time t ≥ s

• n + m + r  edges are added at each time step. n of these edges  are
directed to the new vertex v.  m are directed to vertices x with
probability proportional to ki(x,t) + A.  r are directed to randomly
chosen vertices.

• The source vertices of the new edges are immaterial for the
analysis.



PRDMM analysisPRDMM analysis

As in the analyses done for the previous models, we have:

with boundary condition  ki(s=t,t) = n.

This is the superimposition of two effects, ending in the
power-law distribution:

The value of  γ  shows that the factors of random attachment,
incoming connections to v, and attractiveness  A, have comparable
effects. A may be negative, but its reasonable values are greater
than - ( r + n ) .



The emergence of small worlds:The emergence of small worlds:
         form the caves to the present society         form the caves to the present society

The caves model



Small worldsSmall worlds

The caves model
with messengers



Small worldsSmall worlds

The caves model
with telephones



Small worlds: vertex distanceSmall worlds: vertex distance

A key concept is the distancedistance between any two
vertices x, y, i.e. the number of edges in the
shortest pathshortest path between x and y



Small worlds (Small worlds (MilgramMilgram’’s s experiment 1967)experiment 1967)

The distance between two randomly chosen vertices
is probably small

2

3

TRUE TRUE in a random graphin a random graph



Small worlds (Watts-Small worlds (Watts-Strogatz Strogatz construction 1998)construction 1998)

Adding random edges to a regular latticeAdding random edges to a regular lattice

amounts to building a small worldamounts to building a small world



Small worlds (Watts-Small worlds (Watts-Strogatz Strogatz construction 1998)construction 1998)

Adding random edges to a regular latticeAdding random edges to a regular lattice

amounts to building a small worldamounts to building a small world



ClusteringClustering

The clustering coefficientclustering coefficient of v is:  C(v) = y/wC(v) = y/w

For a vertex v, let Z be the set of vertices
at distance one (1-neighbors1-neighbors), z = |Z| = k(v)

y is the number of edges connecting the
vertices in Z

w = z(z-1)/2  is the maximum value of y



Clustering in a random networkClustering in a random network

v

z = 4,  w = 6,  y = 2,   CC(v)(v) = 1/3 = 1/3

N = 9,  M = 10,  k = 2M/N = 2.22

In general  z = k, and k/N is the probability that two vertices

are connected. We have  C = k/N = 2M/NC = k/N = 2M/N  
22 = 0.25 = 0.25  (see later).

C  indicates the probability that there is an edge between 1-
neighbors, i.e. a loop of length 3. Random graphs with M linear
in N have very few loops.



Large random networks have aLarge random networks have a
                           tree-like local structure                           tree-like local structure

v

Loops appear on the 4-th “shell” of v



Large random networks have aLarge random networks have a
                           tree-like local structure                           tree-like local structure

v
k1 k2

k3

Probability that the 1-neighbours are directly connected:

                          (k1 - 1) (k2 - 1) / (N k)



Averaging this probability we compute theAveraging this probability we compute the
clustering coefficient:clustering coefficient:

where the approximation derives from a property of
Poisson distribution.

Since the clustering coefficient of random graphs is k / N,
the edges between 1-neighbours are practically inexistent.

Generalizing the computation to d-neighbours, we conclude
that the network has a tree-like structure around vertex v.



So, we derive a well-known relation forSo, we derive a well-known relation for
random graphs:random graphs:

This is the small world effect. Compare with the extreme
values N1/r for an r-dimensional grid, or 1 for a complete
graph.

Recalling that z is the number of 1-neighbors,  z 
d is the

approximate number of vertices at a distance d or less from
any given vertex, for “large” z.

Then we can compute the average length d of
the shortest path as:



Betweenness Betweenness σ (also called (also called ““loadload””))

v

For a vertex v, σ(v) is a weighted measure of the
number of shortest paths passing through v.



The concept of The concept of betweenness betweenness was introduced inwas introduced in
sociology to indicate the sociology to indicate the ““centralitycentrality”” of a vertex of a vertex

If the number of shortest paths between vertices i, j is
B(i,j) > 0, and B(i,m,j) pass through v, we have:

The paths of the previous example give a contribution
of 2/3 to σ(v)



Summarizing on network constructionSummarizing on network construction

Classical random graphs in the Classical random graphs in the ErdErdööss--RRéényi nyi modelmodel

• equilibrium graphs with Poisson degree distribution, with all finite
moments

• average shortest path length of order ln N

• tree-like local structure with loops observable at a large scale

• clustering disappears with N going to infinity

Random graphs with consecutive addition of verticesRandom graphs with consecutive addition of vertices

• non-equilibrium graphs with Exponential degree distribution, with
all finite moments

• general properties as before, as N goes to infinity



Summarizing on network constructionSummarizing on network construction

Watts-Watts-Strogats Strogats small-world networkssmall-world networks

•lattice local structure with superimposition of random edges, high
clustering

•equilibrium graphs with Poisson-like degree distribution

• average shortest path length tends to a constant for increasing
density of random edges

BarabBarabáásisi-Albert preferential linking-Albert preferential linking

• non-equilibrium graphs with Power-law degree distribution

• finite first-order moment for the law exponent > 2; all other
moments diverge

• average shortest path length of order ln N, low clustering



A fundamental book for startingA fundamental book for starting

S.R. Dogorovtsev, J.F.F. MendesS.R. Dogorovtsev, J.F.F. Mendes. Evolution of Networks.. Evolution of Networks.
Oxford University Press 2003.Oxford University Press 2003.

  many formulae in this section are taken from it


